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This paper is concerned with simulation of flows with interface between two incompressible and immis-
cible fluids on a fixed grid using what is called the single fluid formalism. This formalism views flow of two
fluids as that of a single fluid whose density and viscosity change abruptly at the interface. The location of
the interface is apriori not known but is to be discovered as part of the solution. Problems of this type are
typically solved using an equation for (a) Volume Fraction or, for (b) Level Set function. In the present
paper, the governing Navier–Stokes equations in primitive variables are solved on collocated grids using
SIMPLE algorithm with a specially derived smoothing pressure correction that satisfies volume conservation.
A superficial density is defined and determined from mass conservation equation. It is shown that this
equation can be cast in the form of a well-known volume fraction equation. The interface location is deter-
mined without interface reconstruction. The convective terms are represented by a TVD scheme to pre-
dict less-smeared interface. The surface tension force is evaluated by two methods via geometric and fluid
dynamic evaluation of the interface curvature.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical prediction of unsteady flow of two incompressible
and immiscible fluids has been a subject of intense research since
the publications of Harlow and Welsh [1] who used the Marker-
and-Cell (MAC) method employing staggered arrangement of vec-
tor and scalar variables. In order to capture the interface, one of
the fluids is identified by marker particles. The momentum equa-
tions are solved by explicit method. Hirt and Nicolls [2] intro-
duced the Volume of Fluid (VOF) method in which an Advection
equation

DF
Dt
¼ @F
@t
þ uj

@F
@xj
¼ 0 ð1Þ

is postulated for predicting the distribution of volume fraction F of
the heavier fluid in space and time. Some geometric properties of
the interface are derived from the local F distribution so as to facil-
itate evaluation of convective fluxes according to the donor–accep-
tor principle. In more recent times several new interface
reconstruction techniques have been used [8–11].

The publication of Jun and Spalding [3] is of a similar kind but
employed the SIMPLEST algorithm in which, at every time step,
the momentum and pressure-correction equations are solved on
ll rights reserved.
a staggered grid implicitly whereas the interface is tracked by solv-
ing (using the fully-explicit van-Leer scheme [4]) an equation for a
conserved scalar (CS) U,

@U
@t
þ @Uuj

@xj
¼ 0 ð2Þ

This equation is same as the advection Eq. (1) for the volume
fraction F when continuity equation ð@uj=@xj ¼ 0Þ is invoked for
incompressible fluids. More recently, Andrillon and Alessandrini
[5] have employed the CICSAM scheme (a variant of a TVD
scheme obeying the NVD principle [7]) due to Ubbink and Issa
[6] for the solution of the conserved scalar equation on unstruc-
tured meshes using collocated variables. The momentum and
the conserved scalar equation are solved by semi-implicit
Crank–Nicholson method. Another variant in this type of interface
capturing methods is the Flux Corrected Transport (FCT)-VOF
method due to Rudman [19].

Another class of interface capturing methods employ the Level-
Set (LS) method [12] in which the advection equation is written
for the signed interface distance function W whose distribution in
an unsteady problem is re-initialised at each time-step by requir-
ing that jrWj ¼ 1 [13]. The form of the W-equation is same as the
U-equation mentioned above. In order to conserve mass, particu-
larly at larger times of interface movement, Zhang et al. [15],
among others (see, for example, [16,17,14,20]), have introduced
modifications to this method. Some of these methods have shown
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Nomenclature

AE;AW;AN,AS;AP coefficients in discretised equations
F volume fraction
Fr Froude number
Fst surface tension force
p pressure
q invariant component of normal stress
R residual
Re Reynolds number
S source term
t time
ui velocity in xi; i ¼ 1;2;3 direction
V volume
~V total velocity vector
We Weber number

Greek symbols
a under-relaxation factor
D incremental value
l dynamic viscosity
q density

U conserved scalar or General Variable
W distance function
k1 multiplier of p� �p
r normal stress or surface tension coefficient

Suffixes
P;N; S; E;W refers to grid nodes
m refers to mass conservation
n normal to the interface
sm refers to smoothing
xi refers to xi; i ¼ 1;2;3 directions

Superscripts
l iteration counter
o old time
ui refers to momentum equations
� multidimensional average
0 correction
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ability to predict liquid break-ups and fine fluid atomisations. The
momentum and the distance-function equation are often discre-
tised by very high order ENO/WENO schemes. This completely
mathematical method is considered most accurate for predicting
interfacial flows [21] and has found adherents in combustion
(flame-tracking) and phase-change (melting and solidification)
applications as well.

A third approach relies on geometric reconstruction of the inter-
face on the basis of predicted distributions of the volume fraction F.
In papers by Rudman [19] and Gerlach et al. [23], several methods
of this type have been compared on 2-dimensional problems. Such
methods (see also [24]), however, prove to be very cumbersome
when 3-dimensional problems are considered on structured or
unstructured meshes.

In this paper, we present a formulation of multi-dimensional
problems with and without surface tension force using an ap-
proach which relies on the faith that the Navier–Stokes equations
in primitive variables contain all the necessary information for pre-
diction of the interface locations and neither geometric interface-
reconstruction nor mathematical level-set formulation are in-
voked. The present formulation is equally applicable to problems
on structured or unstructured meshes.

Finally, it is important to recognise that all methods require ex-
tremely fine meshes to resolve fine flow structures that occur
when fluid splits (atomisation) or tiny bubble entrapments in li-
quid occur. Adaptive grid generation techniques overcome this
need for very fine grids by embedding additional cells in regions
where grid-fineness is required. But, in an unsteady calculation
where the interface locations are continuously changing, this
means that adaptive procedures must be programmed for both
adding as well as for deleting computational cells. Such methods
achieve economy [25,26]. Thus, the problem of accurately predict-
ing interfacial flows is computationally very demanding requiring
continuous improvements both in physics of modeling as well as
in solvers used for discretised equations. The latter are not re-
viewed here. Our approach in this paper is to remain as close to
single fluid flow algorithms as possible with easily adaptable
changes to existing generalised fixed-grid computer codes devised
for single fluid flows.
2. Present formulation

2.1. Governing equations

Within the single fluid formalism, the unsteady flow of two
incompressible immiscible fluids is governed by the following
equations.

@uj

@xj
¼ r � ~V ¼ 0 ð3Þ

@qmui

@t
þ @qmujui

@xj
¼ @

@xj
lm

@ui

@xj

� �
� @p
@xi
þ qmgi þ Fst;i þ

@

@xj
lm

@uj

@xi

� �
ð4Þ

Eq. (3) represents volume conservation whereas Eq. (4) repre-
sents momentum equations in conservative form. Fst;i is the surface
tension force and gi is the gravitational acceleration. Most impor-
tantly, qm is a superficial density associated with the interface
which represents a plane of discontinuity between heavier fluid a
and lighter fluid b. qm equals qb or qa within each fluid.

Eqs. 3 and 4 can be derived from conventional control-volume
analysis. They define the fluid motion completely when procedures
for evaluating superficial properties qm and lm and the surface ten-
sion force Fst;i are formulated.

2.2. Evaluation of qm and lm

Consider a 2-dimensional Cartesian control-volume (CV) shown
in Fig. 1. The figure shows a CV in which the interface resides (solid
line) at time t. Then the total mass of CV is M ¼ ma þmb and the
total volume is V ¼ Va þ Vb. Hence, the superficial density for this
CV will evaluate to

qm ¼
ma þmb

V
¼ qaVa þ qbVb

V
¼ qa

Va

V
þ qb

Vb

V
ð5Þ

If we now define the volume-fraction of the heavier fluid as

F � Va

V
ð6Þ
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Fig. 1. A control volume with an interface.

1 In the LS method, the interface locations are assigned a constant value (usually
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then the volume fraction of the lighter fluid will be Vb=V ¼ 1� F. As
such, the superficial density will read as

qm ¼ qaF þ qbð1� FÞ ð7Þ

or, the volume fraction F can also be defined as

F � Va

V
¼ qm � qb

qa � qb
ð8Þ

This equation shows that F = 1 (with qm ¼ qa) in the heavier
fluid and F = 0 (with qm ¼ qb) in the lighter fluid. The exact value
of F at the interface, however, remains unknown being multi-val-
ued. That is, at the interface, 0 < F < 1. By resorting to pragmatism,
however, F = 0.5 can be taken as the exact location of the interface
as is the usual practice. As such, in a discretised space, the pre-
dicted F distribution will appear smeared in the neighbourhood of
F = 0.5.

Further, with respect to Fig. 1, it will be recognised that a
new time ðt þ DtÞ, the interface will move to a new position
(dotted line). At any new time, while Va and Vb will have chan-
ged, V ¼ Va þ Vb will remain constant; thus justifying Eq. (3).
But, the total mass M ¼ ma þmb in the CV will have changed.
As such, the superficial density qm and hence, F will have chan-
ged. It is this change that via control-volume analysis is reflected
in Eq. (9).

@qm

@t
þ @qmuj

@xj
¼ 0 ð9Þ

This equation determines superficial density distribution with
time from which volume fraction F can be determined using Eq.
(8). The justification for this equation has also been given in the
book by Durbin and Medic [32]; albeit without derivation. Further,
superficial viscosity, being a transport property, may be evaluated
by volume fraction weighting as

lm ¼ laF þ lbð1� FÞ ð10Þ

zero). The equation governing evolution of this level set is then simply DW=Dt ¼ 0.
Using Eq. (3), however, a conservative equation having the form of Eq. (11) can again
be derived but variations of W are restricted to �d 6 W 6 d where d is of the order of
mesh size used in the computations. This, unlike F, makes W a signed distance
function that needs to be re-initialised at every time step. Thus, although similar in
form, the F and W equations have different meanings. Interface smearing is present in
VOF as well as LS methods but the smearing width is restricted in the LS method.
2.2.1. The VOF and Conserved-Scalar Equation
In the derivation above, volume fraction F is derived from den-

sity rather than the other way round as is the practice in VOF, CS
and LS methods. It is therefore of interest to demonstrate how
Eq. (9) represents VOF and conserved-scalar equations. Thus, using
Eqs. 7 and 3, Eq. (9) can also be re-written as

ð11Þ

This equation which is same as conserved scalar Eq. (2), essen-
tially represents mass- and volume-conservation simultaneously.
Many authors solve this equation in lieu of Eq. (9) to recover den-
sity and viscosity. Thus, in the conserved scalar approach, Eq. (11)
is solved in addition to the volume-conservation Eq. (3) which is
deployed to recover pressure. On the other hand, by using Eq. (3)
again, Eq. (11) can be further reduced to VOF- Eq. (1). In the VOF
method, Eq. (1) is simply postulated and not derived. In this method,
it is believed that the interface location can be tracked by evaluat-
ing the volume-fraction F of the heavier fluid. Finally, note that like
in Eq. (9), there are no diffusion terms in Eq. (11) and the source
term is zero.1

Thus, within the Single Fluid Formalism, Eqs. 3, 4 and 9 (or
11) provide the complete set of equations to be solved. The
equation set is unique because it draws on continuity Eq. (3) in-
voked in incompressible flow as well as on mass-conservation
Eq. (9) that is invoked in compressible fluid flows. This is neces-
sitated because when both fluids are incompressible, there is no
equation-of-state available to connect density to pressure. In this
respect, it is worth noting that in one approach called the ghost-
fluid formulation [22], an equation-of-state for water is invoked
along with the perfect gas-law for air. In the present formula-
tion, Eq. (3) is used for recovery of pressure whereas Eq. (9) is
used for recovering qm (or F) distributions without using any
equation of state. This approach has affinity to that employed
by Jun and Spalding [3].



Table 1
Function fcðnÞ [37].

Range of n fc

n 3 ½0;1� 0
n 2 ½0;0:3� n
n 2 ½0:3;5=6� 3/8 � n/ 4
n 2 ½5=6;1� 1 � n
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2.3. Method of solution

Unlike all publications accessible to us for solving the class of
problems considered in this paper, we follow the ideas embodied
in SIMPLE algorithm by Patankar and Spalding [27]. In this algo-
rithm, the unsteady flows are also to be calculated by solving the
momentum, pressure correction and any scalar equations in fully
implicit manner at every time step on a staggered grid. Here, how-
ever, we implement the SIMPLE algorithm on collocated grids while
retaining fully-implicit treatment. For this purpose, Eqs. 3, 4 and 9
(or, Eq. (11)) are represented by the following equation for a gen-
eral variable U ¼ u1; u2 and qm or F2

@ðqmUÞ
@t

þ @ðqmujUÞ
@xj

¼ @

@xj
lm

@U
@xj

� �
þ SU ð12Þ

With reference to Fig. 1, for a two-dimensional flow, the Finite-
Volume discretisation of Eq. (12) yields an implicit equation (see
[28]) for any node P

ðBP þ APÞUlþ1
P ¼ AWUlþ1

W þ AEUlþ1
E þ ASUlþ1

S þ ANUlþ1
N

þ BPUo
P þ Sl

U þ Sl
tvd ð13Þ

where superscript l represents the iteration number, superscript o
represents old time values and

AP ¼ AEþ AW þ AN þ AS ð14Þ
AE ¼ 0:5ðjCej � CeÞ þ de AW ¼ 0:5ðjCwj þ CwÞ þ dw etc ð15Þ

Ce ¼ ðqmuDx2Þe de ¼ le
Dx2

Dx1e
ð16Þ

Cw ¼ ðqmuDx2Þw dw ¼ lw
Dx2

Dx1w
ð17Þ

BP ¼
qo

m;PDV
Dt

ð18Þ

SU ¼ Source Term� DV ð19Þ
Stvd ¼ TVD Source Term� DV ð20Þ

The representation of the time derivative is first order accurate.
Variation of all variables between adjacent nodes is assumed lin-
ear. As such, the discretisation of the diffusive fluxes is second or-
der accurate. Following Date [28,30], the total convective flux is
represented as a sum of the flux according to first order UDS
(shown in Eq. (15)) and a correction TVD flux that imparts high or-
der accuracy and reduces the amount of numerical smearing asso-
ciated with 1st order UDS. Thus, the Sl

tvd term that lags by one
iteration, represents the corrective convection fluxes that are given
by

Stvd ¼
1
2
ðCeþ jCejÞfþceðUW �UEÞ þ

1
2
ðCe� jCejÞf�ceðUEE �UPÞ

þ 1
2
ðCw þ jCwjÞfþcwðUP �UWWÞ þ

1
2
ðCw � jCwjÞf�cwðUW �UEÞ

þ 1
2
ðCnþ jCnjÞfþcnðUS �UNÞ þ

1
2
ðCn� jCnjÞf�cnðUNN �UPÞ

þ 1
2
ðCsþ jCsjÞfþcs ðUP �USSÞ þ

1
2
ðCs� jCsjÞf�cs ðUS �UNÞ ð21Þ

where the fc’s are the shape-sensing functions of the form

fcðnÞ ¼ fc
UU �UUU

UD �UUU

� �
ð22Þ

Here, D connotes downstream, U connotes upstream and UU is
upstream of U. Thus, at cell face e, for example, fþce is a function of
ðUP �UWÞ=ðUE �UWÞ when Ce is positive, and, likewise, f�ce , is a
2 U ¼ 1 when Eq. (9) is solved. If Eq. (11) is solved, qm is set to 1. The right hand
side is zero in both equations.
function of ðUE �UEEÞ=ðUP �UEEÞ when Ce is negative. In the
scheme due to Lin and Lin [37] adopted here, the function fcðnÞ is
as given in Table 1.

This TVD scheme obeys the NVD principle [7]. Date [28,30] has
used this scheme for a problem of compressible shock prediction.
It’s application to flows with interfaces is new. In different TVD
schemes (see [38–41,21], for example), the function fcðnÞ are different.

2.4. Calculation procedure

The overall fully-implicit calculation procedure is as follows:

1. Specify problem dependent initial conditions of F, u1 and u2.
Hence evaluate qm and lm.

2. Choose a time step Dt.
3. Guess pressure pl and evaluate problem dependent source

terms such as qmgi and Fst;i (see Section 2.6). Carry out one
iteration of momentum equation to yield ul

i distributions.
4. Set-up pressure correction equation on the basis of volume

conservation Eq. (3). Thus, following Date [28,29], solve for
total pressure correction p0

@

@xj

aDV
ðAP þ BPÞuj

@p0

@xj

� �
¼
@�ul

j

@xj
ð23Þ

where �ul
j are average of nodal velocities at the control-volume

faces and a is the under-relaxation factor used in momentum
equations. In general, �ul

j do not satisfy momentum equations
over the control volumes surrounding the cell-faces. This cre-
ates need for introducing a smoothing pressure correction p0sm

[28,29].
5. Perform 10 iterations on Eq. (23) to yield p0 distribution.

The mass/volume-conserving pressure correction is now
recovered as

p0m;P ¼ p0P � p0sm;P ð24Þ

Further derivation of the smoothing pressure correction p0sm

from fluid-dynamic considerations is described in Section 2.5.
6. Correct pressure and velocities as

plþ1
P ¼ pl

P þ 0:1� p0m;P

ulþ1
j;P ¼ ul

j;P �
DV

ðAP þ BPÞuj

@p0m
@xj

����
P

ð25Þ

7. Solve F- Eq. (11) or qm Eq. (9). Hence, evaluate fluid property
lm.

8. Check for convergence by evaluating residual defined as

RU �
1
ðJUÞin

X
allnodes

fImbalance in Eq:ð13Þg2

" #0:5

< CC ð26Þ

where ðJUÞin is the inlet-flux of U and CC is a small number.3 If
convergence is not satisfied, return to step 3 to carry out further
iterations.
3 CC is set to 10�5 in all problems. However, in problems in which surface tension is
included, RU is further divided by number of control volumes in the domain. This is
also found necessary by Takahira [16] to satisfy the convergence criterion CC ¼ 10�5.
Also, note that if there is no inlet flux present then ðJUÞin is set to 1.



6 For a compressible fluid, Schlichting [33] has shown this improbability by
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9. Set Uo ¼ U and return to step 2 to execute the next time step.

Thus, except for step 5 where p0m is recovered from p0, the pres-
ent algorithm is the same as that used in the original SIMPLE algo-
rithm on staggered grid. All equations are solved by ADI method
using under-relaxation factor a ¼ 1 in momentum and F equations
and a 6 1 in p0 equation as per the need.

2.5. Evaluation of p0sm

Schlichting [33] and Warsi [34] have defined a quantity �p as
follows

�p ¼ �1
3
ðrx1 þ rx2 þ rx3 Þ ð27Þ

where rxi are normal stresses.4 Now, an often overlooked require-
ment of the Stokes’s law relating the stress to the rate-of-strain is
that, in a continuum, �p must equal the point value of pressure p.
That is

�p ¼ p ð29Þ

This requirement holds even when fluid properties vary in an
arbitrary manner. Of course, the requirement assumes that there
are no relaxation processes at work at the molecular level. In single
fluid formalism the above conditions are indeed satisfied. As such,
substituting for r,

�p ¼ p� q� 2
3
lr �~V ð30Þ

where q is a newly defined quantity.5 It is defined to satisfy the
requirement of Stokes’s law. That is,

p0sm ¼ q ð31Þ

q = 0 in a continuum. However, in a discretised space, q must be
appropriately chosen to render �p ¼ p [28]. We consider different
cases of fluid flow to derive q.

1. Case 1: ð~V ¼ 0Þ In this hydrostatic case,

�p ¼ p� q ð32Þ

But in this case, p can only vary linearly with x1; x2; x3 and, there-
fore, the point value of p exactly equals its space averaged value
�p in both continuum as well as discretised space and hence
p0sm ¼ q ¼ 0 exactly.
2. Case 2: ðl ¼ 0 orr � ~V ¼ 0Þ Clearly when l ¼ 0 (inviscid flow)
or r � ~V ¼ 0 (constant density incompressible flow) Eq. (32)
again holds. But, in this case, since fluid motion is considered,
p can vary arbitrarily with x1; x2; x3 and, therefore, p may not
equal �p in a discrete space. For this case, Date [28] has shown
that without violating the continuum requirement, we may set

p0sm ¼ q ¼ k1ðp� �pÞ ð33Þ

where k1 is an arbitrary constant. In most textbooks, where con-
tinuum is assumed, k1 is trivially set to zero. This case applies to
regions where F = 0 or 1 (single fluid control volumes) and is of
importance to eliminate the problem of zig-zag pressure predic-
tion on collocated grids. Although k1 is an arbitrary constant, the
analysis of the discretised equations show that k1 ¼ 1=2 [28].
4 The expression for the normal stress is given by

rxi ¼ �pþ qþ sii sii ¼ 2l @ui

@xi
no summation: ð28Þ

5 The quantity q must be invariant under rotation of the coordinate system or
interchange of axes [33] to ensure isotropy. In the derivations to follow, it will be
found that this is indeed the case.
This method of eliminating zig-zag pressure prediction is differ-
ent from the momentum interpolation method used by Rhie and
Chow [35] or Ferziger and Peric [36].
3. Case 3: ðl–0 and r � ~V–0Þ This case represents either com-
pressible flow where density is a function of both temperature
and pressure or incompressible flow in which density may
depend on any scalar quantity such as temperature or void frac-
tion F. This case is of special relevance in regions where
0 < F < 1 (Control volumes containing the interface) and the
superficial density varies with F.
In this case, Stokes’s requirement will be satisfied if we set

q ¼ k1ðp� �pÞ � 2
3
lr � ~V ð34Þ

However, note that in a discretised space, in the region
0 < F < 1, r � ~V–0 because density varies in space and time
and l is also finite. But, in a continuum, from Eq. (9) it follows
that
r � ~V ¼ � D

Dt
ðln qmÞ ¼ �

@

@t
ðln qmÞ þ uj

@

@xj
ðln qmÞ

� �
ð35Þ

Therefore, substituting Eq. (35) in Eq. (34), we have

p0sm ¼ q ¼ 1
2
ðp� �pÞ þ 2

3
l @

@t
ðln qmÞ þ uj

@

@xj
ðln qmÞ

� �
ð36Þ

The first term on the right hand side represents difference be-
tween point value and the local space averaged value of pres-
sure. It ensures that the problem of zig-zig pressure field
prediction is eliminated. The second term which is influenced
by viscosity, represents the effect of rate of volume change. If
this term is not nullified (or, accounted for) then the system
will experience dissipation even when the temperature remains
constant. This is, of course, improbable.6 Here, non-nullification
results in loss of volume and, hence, mass. Thus, the second
term is of importance for ensuring volume/mass conservation
during the entire transient process. The term is identically zero
when F = 0 or 1 (over 3 neighbouring CVs in each direction in a
discretised space) and Eq. (33) is readily recovered. Thus, since
Eq. (36) is applicable to all regions of flow, it is used to evalu-
ate smoothing pressure correction in the present calculations.
To the best of our knowledge, this manner of avoiding the
problem of loss of mass (within discretisation errors) is a new
contribution to fluid dynamics of incompressible flows with
interfaces.
4. Finally, as shown in Date [28], the space-averaged pressure
is evaluated as
�pP ¼
1
3
ð�px1 þ �px2 þ �px3 ÞP ð37Þ

where

ð�pxi
ÞP ¼ solution to

@2p
@x2

i

jP ¼ 0 ð38Þ

This manner of evaluation7 of �pP is directly applicable to compu-
tations on both structured and unstructured meshes.
considering the case of an isothermal sphere of gas subjected to uniform normal
stress (no shear). If q, as defined in Eq. (34) is not invoked, the gas will undergo
improbable oscillations.

7 With reference to Fig. 1, evaluations in discretised space according to Eq. (38) will
imply

ð�px1 ÞP ¼
Dx1epW þ Dx1wpE

Dx1e þ Dx1w
ð�px2 ÞP ¼

Dx2npS þ Dx2spN

Dx2s þ Dx2s
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2.6. Evaluation of Fst

The surface tension force vector~Fst acts normal to the interface.
When surface tension coefficient r is constant, the force per unit
area is given by

~Fst

Aint
¼ rj~n ð39Þ

where Aint is the interfacial area,~n is the unit outward normal to the
interface, j is curvature of the interface (see Fig. 2) and,

~n ¼ rF
A

with A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@F
@x1

� �2

þ @F
@x2

� �2

þ @F
@x3

� �2
s

ð40Þ

j ¼ r �~n ¼ @nxi

@xi
ð41Þ

Thus, the component of the force per unit volume in direction i
(see Eq. (4)) is given by8

Fst;i ¼ �rjrF ¼ �rj
@F
@xi
¼ �r @nxi

@xi

@F�

@xi
ð42Þ

where F� is given by

F� ¼ 0:5 1þ ðF � 0:5Þ
jF � 0:5j

� 	
ð43Þ

This replacement of F by F� in Eq. (42) ensures that the surface
tension force is evaluated at the interface (F=0.5) only even when
F-distribution is smeared. Of course, F�b ¼ 0 and F�a ¼ 1. The main
task now is to evaluate the curvature j.

2.6.1. Geometric evaluation of j
Most authors using VOF or Level-Set methods evaluate j from

Eq. (41) after geometric reconstruction of the interface. Thus, from
Eq. (41),

j ¼ �1
A

1
A
@F
@xi

@A
@xi
� @

2F
@x2

i

" #
summation ð44Þ

Following comments are now considered pertinent.

1. Evaluation of j according to Eq. (44) is complex and is known
to introduce discretisation errors. This has been shown by
Takahira et al. [16] where a computation of a static bubble sur-
rounded by static liquid generates spurious velocities.
8 Following thermodynamics convention, the negative sign acknowledges that the
surface tension force is exerted on the fluid.
2. Further, it is important to point out that many authors
[23,17,18] study effect of surface tension coefficient r by keep-
ing the density and viscosity values of two fluids unchanged. As
such, Fst;i calculated using Eq. (44) produces different magni-
tudes of the force (see Eq. (42)) for the same fluid pair. However,
in the literature, no real two fluid pairs having same values of
density and viscosity but different values of r are found. In
our opinion such studies of effect of r are misleading and are
only of academic interest.

3. We believe that the source of the difficulty mentioned above
can be traced to non-dimensionalisation of momentum Eq.
(4). Many authors (see, [16], for example) use reference
velocity U, reference length L and reference properties qa

and la to non-dimensionalise Eq. (4). The dimensionless
equation then reads

@q�mu�i
@t�

þ
@q�mu�j u�i
@x�j

¼ 1
Re

@

@x�j
l�m

@u�i
@x�j

" #
� @p�

@x�i
þ q�mg�i �

j�

We
@F�

@x�i

þ 1
Re

@

@x�j
l�m

@u�j
@x�i

� �
ð45Þ

where the dimensionless terms are

Re ¼ qaUL
la

Reynolds number ð46Þ

g� ¼ gL

U2 Froude number ð47Þ

j� ¼ jL Dimensionless curvature ð48Þ

We ¼ qaU2L
r

Weber number ð49Þ

q�m;l
�
m ¼

qm

qa
;
lm

la
Dimensionless properties ð50Þ

u�i ; p
� ¼ ui

U
;

p

qaU2 Dimensionless velocity and pressure ð51Þ

x�i ; t
� ¼ xi

L
;

t
L=U

Dimensionless coordinates and time ð52Þ

Eq. (45) thus shows that since j� is evaluated geometrically from
F-distribution, the Weber number (We) now appears to be an inde-
pendent parameter of the flow system. This, interpretation leads to
investigation of effect of surface tension coefficient r (or, We) for
the same fluid pair. In the discussion below, we show that this is
misleading and that Weber number is not an independent parame-
ter of the flow system. Incidentally, in the literature, the Froude
number is also defined as Fr ¼ U2=ðgLÞ.

2.6.2. Fluid dynamic evaluation of j
In view of the last comment, we consider an alternative ap-

proach to evaluation of j and Fst;i. Thus, we assume that the inter-
face is a surface of zero thickness having no physical properties. Then,
taking the dot-product of momentum Eq. (4) (along with Eq. (42))
with interface normal ~n will result in

@

@n
ðp� snnÞ ¼ �rj

@F�

@n
snn ¼ 2l @Vn

@n
ð53Þ

where Vn is the velocity normal to the interface. Note that the un-
steady, convective and gravity terms disappear because the inter-
face has zero thickness and no mass. However, invoking the
Stokes’s requirement (with q = 0 for a control-volume of zero thick-
ness normal to the interface)

p� snn ¼ �p ¼ �rn ð54Þ

Hence, Eq. (53) will read as
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Fig. 3. Zero-thickness control volume surrounding an interface.
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d�p
dn
¼ �rj

dF�

dn
ð55Þ

This equation is same as the familiar Young-Laplace equation
for the equilibrium of a static bubble in a static fluid in which
snn ¼ 0 [42]. Here, snn is finite. Now, upon discretisation (see
Fig. 3) along the normal to the interface, it follows that

rj ¼ � d�p=dn
dF�=dn

¼ �
�pb � pa

F�b � F�a
¼ �

�pb � �pa

0� 1
¼ �pb � �pa ð56Þ

and hence,

Fst;i ¼ �ð�pb � �paÞ
@F
@xi

ð57Þ

Following comments are now pertinent.

1. The remarkable feature of Eq. (57) is that evaluation of the
surface tension force does not require value of r at all. This
is because, in Eq. (56) product rj is directly evaluated as
the difference of average pressures on either sides of the
interface.9

2. On both structured and unstructured grids, the difference of
average pressures can be evaluated following Eq. (37) as

rj ¼ ð�pb � �paÞP ¼
1
3
ð�pb � �paÞxi ;P

summation ð58Þ

ð�pb � �paÞxi ;P
¼ solution of

@2

@x2
i

½pð1� 2F�Þ�P ¼ 0 ð59Þ

This manner of evaluation ensures that rj is calculated at the
interface (F = 0.5) only.

3. The interface shape is thus influenced by fluid properties qa;b and
la;b and the boundary conditions only which in turn determine
the pressure and F distributions.

4. This result may appear at variance with most previous
researches but certainly accords with the practical fact that
the same fluid pair cannot have different values of r and
hence, r (or Weber number) is not an independent parameter
of the flow system. In view of this variance with previous
researches, in the companion paper [43], we have computed
two problems with both geometric and fluid dynamic evalua-
tions of Fst;i and compared the interface evolutions. Of course,
the ultimate validity of the fluid dynamic as well as geometric
evaluation of the surface tension force can only emerge from
comparison with experiment. Unfortunately, we do not have
access to any experimental data to demonstrate merits of
either evaluations.
9 It is appropriate to mention that Sussnman et al. [14] do recognise the validity of
Eqs. 54 and 56 but they do not use them to evaluate the surface tension force as done
here.
3. Conclusions

1. In this paper the problem of prediction of unsteady flow of two
immiscible incompressible fluids is formulated within the sin-
gle fluid formalism. Discretised Navier–Stokes equations are
solved on collocated grids after invoking the requirement of
Stokes’s laws for an isotropic fluid.

2. Equations are solved in a fully-implicit manner at each time
step by adapting the computer code given in [28]. The overall
calculation procedure is also applicable to three-dimensional
unstructured meshes [31].

3. The VOF and Conserved-Scalar equations are derived from the
mass-conservation equation with an intent to serve a pedagogic
purpose.

4. The satisfaction of requirement Stokes’s stress–strain relations
leads to
(a) Alleviation of the problem of zig-zag pressure prediction as

well as the problem of loss of volume/mass during
unsteady computations over large times.

(b) Fluid-dynamic interpretation of interface curvature which
in turn evaluates the surface tension force without requir-
ing knowledge of surface tension coefficient r.
5. The fluid dynamic interpretation of the surface tension force
shows that the Weber number cannot be an independent
parameter of the flow system. This is at variance with the inter-
pretation that is routinely associated with the geometric evalu-
ation of interface curvature in all previous publications.

6. TVD scheme is used for representation of convective terms to
reduce interface smearing.

The companion paper [43] shows application of the method
developed in this paper.
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